相关动态
NLP自然语言处理库系列教程——gensim库
2024-11-10 23:36

Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。 - LSI - LDA - HDP - DTM - DIM - TF-IDF - word2vec、paragraph2vec

NLP自然语言处理库系列教程——gensim库

  • 语料(Corpus:一组原始文本的集合,用于无监督地训练文本主题的隐层结构。语料中不需要人工标注的附加信息。在Gensim中,Corpus通常是一个可迭代的对象(比如列表)。每一次迭代返回一个可用于表达文本对象的稀疏向量。
  • 向量(Vector:由一组文本特征构成的列表。是一段文本在Gensim中的内部表达。
  • 稀疏向量(Sparse Vector:通常,我们可以略去向量中多余的0元素。此时,向量中的每一个元素是一个(key, value)的tuple。
  • 模型(Model:是一个抽象的术语。定义了两个向量空间的变换(即从文本的一种向量表达变换为另一种向量表达)。

1.我们需要从文档集中获得词库:

  • 0) 分词
  • 1) 去掉没有意义的冠词
  • 2) 去低频词: 去掉只在出现过一次的单词(避免我们的语料库矩阵太稀疏了)
  • 3) 将剩下的词做成词库

2.根据词库处理文档集,转化为语料库

训练语料的预处理指的是将文档中原始的字符文本转换成Gensim模型所能理解的稀疏向量的过程。

通常,我们要处理的原生语料是一堆文档的集合,每一篇文档又是一些原生字符的集合。在交给Gensim的模型训练之前,我们需要将这些原生字符解析成Gensim能处理的稀疏向量的格式。

由于语言和应用的多样性,Gensim没有对预处理的接口做出任何强制性的限定。通常,我们需要先对原始的文本进行分词、去除停用词等操作,得到每一篇文档的特征列表。例如,在词袋模型中,文档的特征就是其包含的word

其中,corpus的每一个元素对应一篇文档。

接下来,我们可以调用Gensim提供的API建立语料特征(此处即是word)的索引字典,并将文本特征的原始表达转化成词袋模型对应的稀疏向量的表达。依然以词袋模型为例

到这里,训练语料的预处理工作就完成了。我们得到了语料中每一篇文档对应的稀疏向量(这里是bow向量;向量的每一个元素代表了一个word在这篇文档中出现的次数。值得注意的是,虽然词袋模型是很多主题模型的基本假设,这里介绍的doc2bow函数并不是将文本转化成稀疏向量的唯一途径。在下一小节里我们将介绍更多的向量变换函数。

最后,出于内存优化的考虑,Gensim支持文档的流式处理。我们需要做的,只是将上面的列表封装成一个Python迭代器;每一次迭代都返回一个稀疏向量即可。

对文本向量的变换是Gensim的核心。通过挖掘语料中隐藏的语义结构特征,我们最终可以变换出一个简洁高效的文本向量。

在Gensim中,每一个向量变换的操作都对应着一个主题模型,例如上一小节提到的对应着词袋模型的doc2bow变换。每一个模型又都是一个标准的Python对象。下面以TF-IDF模型为例,介绍Gensim模型的一般使用方法。

首先是模型对象的初始化。通常,Gensim模型都接受一段训练语料(注意在Gensim中,语料对应着一个稀疏向量的迭代器)作为初始化的参数。显然,越复杂的模型需要配置的参数越多。

其中,corpus是一个返回bow向量的迭代器。这两行代码将完成对corpus中出现的每一个特征的IDF值的统计工作。

接下来,我们可以调用这个模型将任意一段语料(依然是bow向量的迭代器)转化成TFIDF向量(的迭代器)。需要注意的是,这里的bow向量必须与训练语料的bow向量共享同一个特征字典(即共享同一个向量空间)。

注意,同样是出于内存的考虑,model[corpus]方法返回的是一个迭代器。如果要多次访问model[corpus]的返回结果,可以先讲结果向量序列化到磁盘上。

我们也可以将训练好的模型持久化到磁盘上,以便下一次使用

Gensim内置了多种主题模型的向量变换,包括LDA,LSI,RP,HDP等。这些模型通常以bow向量或tfidf向量的语料为输入,生成相应的主题向量。所有的模型都支持流式计算。关于Gensim模型更多的介绍,可以参考这里:API Reference

在得到每一篇文档对应的主题向量后,我们就可以计算文档之间的相似度,进而完成如文本聚类、信息检索之类的任务。在Gensim中,也提供了这一类任务的API接口。

以信息检索为例。对于一篇待检索的query,我们的目标是从文本集合中检索出主题相似度最高的文档。

首先,我们需要将待检索的query和文本放在同一个向量空间里进行表达(以LSI向量空间为例

接下来,我们用待检索的文档向量初始化一个相似度计算的对象

我们也可以通过save()和load()方法持久化这个相似度矩阵

注意,如果待检索的目标文档过多,使用similarities.MatrixSimilarity类往往会带来内存不够用的问题。此时,可以改用similarities.Similarity类。二者的接口基本保持一致。

最后,我们借助index对象计算任意一段query和所有文档的(余弦)相似度

在Gensim中实现word2vec模型非常简单。首先,我们需要将原始的训练语料转化成一个sentence的迭代器;每一次迭代返回的sentence是一个word(utf8格式)的列表

接下来,我们用这个迭代器作为输入,构造一个Gensim内建的word2vec模型的对象(即将原始的one-hot向量转化为word2vec向量

如此,便完成了一个word2vec模型的训练。

我们也可以指定模型训练的参数,例如采用的模型(Skip-gram或是CBoW;负采样的个数;embedding向量的维度等。具体的参数列表在这里

同样,我们也可以通过调用save()和load()方法完成word2vec模型的持久化。此外,word2vec对象也支持原始bin文件格式的读写。

Word2vec对象还支持online learning。我们可以将更多的训练数据传递给一个已经训练好的word2vec对象,继续更新模型的参数

若要查看某一个word对应的word2vec向量,可以将这个word作为索引传递给训练好的模型对象

计算两个词之间的余弦距离

计算与某个词最相近的词

保存模型、加载模型

增量训练

    以上就是本篇文章【NLP自然语言处理库系列教程——gensim库】的全部内容了,欢迎阅览 ! 文章地址:http://yejunbin01.xhstdz.com/quote/72637.html 
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 物流园资讯移动站 http://yejunbin01.xhstdz.com/mobile/ , 查看更多   
发表评论
0评